

R3PACK - REDUCE, REUSE, RETHINK PACKAGING TOWARDS NOVEL FIBRE-BASED PACKAGING AND REUSE SCHEMES

Grant Agreement No. 101060806

Work package: WP6 - Impacts assessment
Task: 6.1 - State of the art packaging LCA
Deliverable: D 6.1 - Part A

Dissemination level:	Public
Issue date:	May 2023
Lead beneficiary:	Innovhub SSI

HISTORY OF CHANGES

Version	Publication date	Changes
1.0	10.05.2023	Draft to Reset
2.0	31.05.2023	Deliverable

ADDITIONAL AUTHOR(S) CONTRIBUTION	
Name	Organization
Barbara Del Curto, Romina Santi, Carlo Proserpio, Stefano Ferraresi	Polimi
Daniele Bussini, Chiara Cappelletti	Innovhub-SSI

DOCUMENT DISTRIBUTION

Issue	Date	Distributed to
V1	31/05/2023	European Commission

VERIFICATION AND APPROVAL

	Date	Distributed to
Approval final deliverable by (RE)SET	12/05/2023	Elodie Schott
	31/05/2023	Antoine Covillers

Acror	ıyms	4
Defin	itions	4
1. SL	UMMARY	4
2. GE	ENERAL INFORMATION ABOUT THE PRODUCTS IN SCOPE	5
3. GC	OAL OF THE STUDIES	6
4. SU	COPE OF THE STUDIES	7
4.1.	Functional unit and reference flow	7
4.2.	System boundary	7
4.3.	Environmental Footprint impact categories	9
5. LI	FE CYCLE INVENTORY ANALYSIS	10
5.1.	Data collection and quality	10
5.2.	LCI organization	11
6. IM	IPACT ASSESSMENT RESULTS	21
7. IN	ITERPRETING PEF RESULTS	42
7.1.	Relevant impact categories	42
7.2.	Relevant impact categories overview and comments	45
8. Al	VNEXES	47
8.1.	Annex I: Data collection	47
Referen	nces	52

<u>LCAs Results - State of the Art</u> <u>SUBSTITUTION</u> PEF Report

Acronyms

CFF: Circular Footprint Formula EF: Environmental Footprint LCA: Life Cycle Assessment LCI: Life Cycle Inventory PEF: Product Environmental Footprint PEFCRs: Product Environmental Footprint Category Rules PP+M: PreProduction & Manufacturing EoL: End-of-life EF: Environmental Footprint

Definitions

Life cycle Assessment (LCA) – Compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle (ISO 14040:2006).

Product Environmental Footprint Category Rules (PEFCRs) - Product category specific, life cycle based rules that complement general methodological guidance for PEF studies by providing further specification at the level of a specific product category. PEFCRs help to shift the focus of the PEF study towards those aspects and parameters that matter the most, and hence contribute to increased relevance, reproducibility and consistency of the results by reducing costs versus a study based on the comprehensive requirements of the PEF method. Only the PEFCRs listed on the European Commission website (http://ec.europa.eu/environment/eussd/smgp/PEFCR_OEFSR_en.htm) are recognised as in line with this method.

Funded by the European Union

The goal of the following work is the environmental impact evaluation of the stateof-the-art related to the packaging solutions selected to be substituted within the R3PACK project. The methodology followed is the Life Cycle Assessment (LCA) carried out through SimaPro software and following the PEF method with some adaptations (declared in the report). This report will analyse ten primary packaging belonging to nine different food categories defined in the R3PACK project. The functional unit is «one unit of food packaging of a determined capacity able to contain, preserve, protect the food inside and inform about it, guaranteeing proper food safety and shelf life». The main limitations and assumptions are due to the lack of primary data, replaced by proxy datasets. Since this report aims to show the main impact assessment results, these are limited to highlighting the most relevant life cycle stages, processes and impact categories. This state-of-the-art analysis will be necessary to set the baseline for comparisons with the newly developed cellulosebased packaging in D 6.3 Part. A (M36).

2. GENERAL INFORMATION ABOUT THE PRODUCTS IN SCOPE

This first part (A) of D6.1 provides the results of Life Cycle Assessment (LCA) studies related to ten existing packaging (state of the art) selected to be substituted. The general table below (Tab. 1) shows the relevant information for each product analysed, i.e., product name, format, nominal capacity (in grams or millilitres), reference food product category (among those covered by the R3PACK project), name of the company using the packaging. For all products, the study's publication date coincides with the deadline for the deliverable D6.1 A (M12, May 2023). The geographic validity of the research and the country where the product is consumed/sold is France, Europe.

Each packaging is marked with an identification number (LCA ID) to identify the LCA dedicated to it.

In cases where data relating to several packaging have been provided in the same food category, the one deemed most representative or the one for which more detailed data has been retrieved has been selected.

	Product	Florette Shaker Ananas		
	Format	PET Cup		
AMARKAN ANALY	Capacity	400 ml		
or any series	Food category	Prepared fruits		
	Company	Floréale		
	LCA ID	01		
	Product	Salad MDD		
	Format	PET Tray		
Citidettes	Capacity	250 g		
Salade	Food category	Prepared salad		
	Company	LSDH		
	LCA ID	02		
	Product	Sour cream		
	Format	PP Cup		
a more than the	Capacity	200 g		
Voplate	Food category	Yoghurt		
Crème Fraîche	Company	Yoplait		
100% Naturallo	LCA ID	03		

Tab 1. Products analyzed

Funded by the European Union

	Product	Greek yoghurt
	Format	PP Cup
	Capacity	450 g
	Food category	Yoghurt
Catha I	Company	Yoplait
(Citize	LCA ID	04
	Product	Pork chop
	Format	EPS Tray
	Capacity	500 g
Concert?	Food category	(nono)
		05
	Product	Florette Mache
	Format	OPP Film
Florette	Capacity	125 g
	Food category	Bagged salad
	Company	Floréale
	LCA ID	06
	Product	Butter classic
	Format	Aluminium & OPP Film
BEL	Capacity	250 g
ISTIN FINE	Food category	Butter
CONTRACTOR AND	Company	Sodiaal
P.	LCA ID	07
	Product	Grated cheese
EntreMont	Format	OPA & LDPE Film
BIO	Capacity	180 g
PRANCAIS	Food category	Cheese
	Company	Sodiaal
180 g	LCA ID	08
	Product	Peanut curl
	Format	OPP Film
Brets	Capacity	125 g
Camembert	Food category	Chips
	Company	Altho
C III		09
	Product	Savory biscuits
	Format	OPP Sachet & Cardboard
0000 (Capacity	85- 105 g
MIX PARTY	Food category	Savory biscuits
	Company	Europe Spacks
		10

3. <u>GOAL OF THE STUDIES</u>

The following environmental impact analyses aim to evaluate, define and interpret the environmental criticalities deriving from the life cycle of the existing packaging solutions selected to be substituted within the R3PACK project. This first part (Part

A), defined in Task 6.1, is intended to provide data on the packaging's state-of-theart related impacts. These data will be necessary to set comparisons with substituting paper-based solutions developed in WP4 and evaluate the actual environmental improvements.

The partner contributors to WP4 constitute the target audience of this study, and the commissioner is to be considered R3PACK project.

The impact evaluation will be conducted through Life Cycle Assessment (LCA) defined by standards ISO 14040 and 14044, using the SimaPro software (PRé Sustainability). The impact assessment will be carried out considering datasets and environmental indicators defined in the PEF methodology proposed by European Commission. The standard methods to measure the life cycle environmental performances have been included in the Commission Recommendation 2021/2279 published in December 2021. Environmental Footprint (EF) methods are in a transition phase, and – to date – no PEFCRs are available for packaging products. Some methodological limitations have been applied concerning the established PEF methodology¹: limitations, assumptions and other non-PEF compliant elements are declared along the report.

4. <u>SCOPE OF THE STUDIES</u> 4.1.Functional unit and reference flow

The functional unit² of the analysed system is defined as follows: "**one unit** of **food packaging** responding to the four following aspects:

- Function(s)/service(s) provided: contain, preserve, protect during distribution and provide information about the content product defined in the "Food category" item in Table 1 (e.g. prepared fruits);
- Extent of the function or service: defined capacity/weight of the packaged product defined in the "Capacity" item in Table 1 (e.g. 400 ml);
- Expected level of quality: guarantee food safety performances and shelf-life;
- Duration/life time of the product: equal to the expected shelf-life;
- **Reference flow**: the amount of product needed to fulfill the defined function that shall be measured in grams of packaging material(s).

4.2. System boundary

The nine food categories selected for substitution in R3PACK project have been: bagged salad, butter, cheese, chips, in-shop products, prepared salad, savory biscuits, prepared fruits and yoghurt. The project partners have selected a representative product for each category and are those in Table 1. Two products have been selected for the yoghurt category, one for Greek yoghurt and another for sour cream. The analyses will consider **primary packaging** raw material acquisition and pre-processing, manufacturing, distribution stage, use stage and end-of-life. Secondary packaging, packaging-related food waste, packaging geometric features (e.g. emptyability) and the packaging filling phase will be excluded from the system boundary because they are taken as unvaried characteristics for the substitution purpose. All the processes attributed to the packaging are listed in the Life Cycle Inventory (LCI) divided by life cycle stages. Here below, a list of the processes considered for each stage is provided:

² Zampori, L. and Pant, R., Suggestions for updating the Product Environmental Footprint (PEF) method, EUR 29682 EN, Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-76- 00654-1, doi:10.2760/424613, JRC11595. §3.2.1 Functional unit and reference flow

¹ Zampori, L. and Pant, R., Suggestions for updating the Product Environmental Footprint (PEF) method, EUR 29682 EN, Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-76-00654-1, doi:10.2760/424613, JRC11595. https://publications.jrc.ec.europa.eu/repository/handle/JRC115959

- **Raw material acquisition and pre-processing**: this life cycle stage begins when resources are extracted from nature and ends when product components enter the packaging production plant. In particular, it includes the pre-processing of material inputs. The transportation related to the acquisition of raw material is partly modelled by SimaPro (embedded in the Market processes, selected whenever available).
- **Manufacturing**: the production stage begins when the product components enter the production site and ends when the finished product leaves the production facility. The transportation related to the acquisition of material is partly modelled by SimaPro (embedded in the Market processes, selected whenever available).
- **Distribution stage/Use stage**: this phase corresponds to the packaged product's distribution and storage (warehouse/retail). For substitution, it won't be associated with any process both for the lack of primary data and considering that with the same functional unit (that should be adopted to establish comparative analyses in the following deliverables), impacts related to distribution and use stage are comparable between the state-of-the-art packaging and the one manufactured with newly developed materials. In the occurrence of substantial differences related to these phases between the state-of-the-art and new solutions, it will be necessary to retrieve and implement primary data relating to the two scenarios to structure a comparison.
- **End-of-life**: this stage begins when the user disposes of the packaging and ends when it is returned to nature as a waste product or enters another product's life cycle (i.e. as a recycled input). In this case, recycling operations, incineration and landfilling are considered. The following analyses will account for incineration and landfilling-related contributions to define the impact assessment results. At the same time, processes that offer environmental benefits, such as recycling and energy recovery, are excluded from the calculation due to the cut-off approach that will be described later. A specific waste scenario has been modelled for the analyses considering French data on packaging EoL.
- **System boundary diagram**: the following map in Figure 1 shows the different life cycle stages considered. Pre-processing and Manufacturing phases are merged in the process inventory and in the presentation of the results. As described above, distribution and use are not associated with any flow.

Figure 1: System boundaries diagram.

4.3. Environmental Footprint impact categories

LCA results are presented through various environmental impact categories. For the impact assessment all the 16 EF (Environmental Footprint) impact categories shown in Table 2 are taken into account together with an all-encompassing value expressed in Pt obtained by weighting the different categories through appropriate factors. In the interpretation phase, only the most relevant impact categories are considered. Table 2 shows the list of all the EF impact categories and related indicators and units are provided³.

EF Impact category	Impact category Indicator	Unit	Characterization model
Climate change, total⁴	Radiative forcing as global warming potential (GWP100)	kg CO2 eq	Baseline model of 100 years of the IPCC (based on IPCC 2013)
Ozone depletion	Ozone Depletion Potential (ODP)	kg CFC-11 eq	Steady-state ODPs as in (WMO 2014 + integrations)
Human toxicity, cancer	Comparative Toxic Unit for humans (CTUh)	CTUh	USEtox model 2.1 (Fankte et al, 2017)
Human toxicity, non-cancer	Comparative Toxic Unit for humans (CTUh)	CTUh	USEtox model 2.1 (Fankte et al, 2017)
Particulate matter	Impact on human health	disease incidence	PM method recomended by UNEP (UNEP 2016)
lonising radiation, human health	Human exposure efficiency relative to U235	kBq U235 eq	Human health effect model as developed by Dreicer et al. 1995 (Frischknecht et al, 2000)
Photochemical ozone	Tropospheric ozone concentration increase	kg NMVOC eq	LOTOS-EUROS model (Van Zelm et al, 2008) as

Tab 2. EF impact categories and related indicators and units.

 ⁴ The indicator "Climate Change, total" is constituted by three sub-indicators: Climate Change, fossil; Climate Change, total" is constituted by three sub-indicators: Climate Change, fossil; Climate Change, total" is constituted by three sub-indicators are further described in section 4.4.10. The sub-categories 'Climate change –fossil', 'Climate change – biogenic' and 'Climate change - land use and land use change – biogenic' and 'Climate change - land use and land use change – biogenic' and 'Climate change - land use and land use change – biogenic' and 'Climate change - land use and land use change", shall be reported separately if they show a contribution of more than 5% each to the total score of climate change.

Funded by the European Union

³ Zampori, L. and Pant, R., Suggestions for updating the Product Environmental Footprint (PEF) method, EUR 29682 EN, Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-76- 00654-1, doi:10.2760/424613, JRC11595. § 3.2.3 Environmental Footprint impact categories, Tab. 2

-			
formation, human health			implemented in ReCiPe 2008
Acidification	Accumulated Exceedance (AE)	mol H+ eq	Accumulated Exceedance (Seppälä et al. 2006, Posch et al, 2008)
Eutrophication, terrestrial	Accumulated Exceedance (AE)	mol N eq	Accumulated Exceedance (Seppälä et al. 2006, Posch et al, 2008)
Eutrophication, freshwater	Fraction of nutrients reaching freshwater end compartment (P)	kg P eq	EUTREND model (Struijs et al, 2009) as implemented in ReCiPe
Eutrophication, marine	Fraction of nutrients reaching marine end compartment (N)	kg N eq	EUTREND model (Struijs et al, 2009) as implemented in ReCiPe
Ecotoxicity, freshwater	Comparative Toxic Unit for ecosystems (CTUe)	CTUe	USEtox model 2.1 (Fankte et al, 2017)
Land use	 Soil quality index⁵ Biotic production Erosion resistance Mechanical filtration Groundwater replenishment 	 Dimensionless (pt) kg biotic production kg soil m3 water m3 groundwater 	Soil quality index based on LANCA (Beck et al. 2010 and Bos et al. 2016)
Water use	User deprivation potential (deprivation-weighted water consumption)	m3 world eq	Available WAter REmaining (AWARE) as recommended by UNEP, 2016
Resource use ⁶ , minerals and metals	Abiotic resource depletion (ADP ultimate reserves)	kg Sb eq	CML 2002 (Guinée et al., 2002) and van Oers et al. 2002.
Resource use, fossils	Abiotic resource depletion – fossil fuels (ADP-fossil) ⁷	MJ	CML 2002 (Guinée et al., 2002) and van Oers et al. 2002

5. <u>LIFE CYCLE INVENTORY ANALYSIS</u> 5.1. Data collection and quality

DATA COLLECTION

To build the life cycle inventory (LCI), a data collection form was sent to the partners involved. Given the scarcity of data recovered from the data collection T1, a simplified version of the form was formulated to retrieve the essential primary data necessary to conduct the analyses.

Tab. 3 shows a *fac-simile* of the data collection model: the partners were asked to specify, for each layer of the packaging, the material (possibly accompanied by the relative technical datasheet), the weight in grams of the layer itself and its manufacturing process(es). Partners were also asked to indicate packaging nominal capacity, the overall production technology and to provide a reference image of the product.

⁶ The results of this impact category shall be interpreted with caution, because the results of ADP after normalization may be overestimated. The European Commission intends to develop a new method moving from depletion to dissipation model to better quantify the potential for conservation of resources

⁷ In the EF flow list, and for the current recommendation, Uranium is included in the list of energy carriers, and it is measured in MJ.

⁵ This index is the result of the aggregation, performed by JRC, of the 4 indicators provided by LANCA model as indicators for land use.

Tab 3. Fac-simile of data collection model

Name of the product	BEVERAGE MULTILAYER	?		
Packaging capacity	1 L			
PRODUCT COMPOSITION ·	INBOUND OF RAW MATERI	ALS		
	Commercial name of the	Weight	Duran ta da a la su	
	(Material Data Sheet)	(g)	Process technology	
PACKAGING BODY	· · ·			
First layer	Solid bleached and unbleached board carton	11	(Sulfate pulp production)	
Aluminum foil	aluminum	2.7		
Adhesive	Vinyl acetate	0.2		
Ink	printing ink	0.05		
Varnish	mix of organic and inorganic compound	0.05		
	· · · ·			
Packaging production technology	LAMINATION			

DATA QUALITY

With regard to materials, in most cases was indicated the general type of material (e.g. PET, aluminium, etc.), but not the exact grade and composition; for this reason, data retrieved from the databases available in SimaPro were used, specifically the Ecoinvent database⁸, considering material grades suitable for food packaging. Similarly, for processes (e.g. extrusion, rolling, etc.) Ecoinvent databases were considered as well.

The retrieved data from partners are reported in Annex 1 at the end of this document.

5.2. LCI organization

In this paragraph, the inventory tables are provided and organized to keep the various phases of the packaging life cycle separate as described in the system boundary diagram.

PRE-PROCESSING AND MANUFACTURING LCI

Here below, for each product, a table describing the pre-processing (PP) and manufacturing (M) processes of the packaging is provided. The inventory is structured as a bill of materials: each component that makes the product up is associated with a position number that reflects the structure of the assemblies; quantity and weight in grams are indicated for each component/assembly.

Regarding pre-processing, the material (as declared by the company in the data collection form) is indicated for each layer, together with the corresponding raw material selected in SimaPro. With respect to manufacturing, a description of the processes used and an indication of the corresponding processes in SimaPro is provided. If the original datasets have been modified to adapt them to the French context by selecting, for example, energy data related to this geographical area, all the modifications made are reported in a dedicated column.

In correspondence with each table, any limitations and assumptions made during the compilation of the inventory are reported.

• TABLE A1, PP-M LCI, PRODUCT 01 – Florette Shaker, PET Cup

<u>Assumptions and limitations</u>: the heat sealing process for components 1.1 and 1.2 has been omitted due to the lack of specific information retrieved in the data collection and suitable Ecoinvent datasets. Furthermore, no information

 $^{^{8}}$ Further information on Ecoinvent databases are available at https://ecoinvent.org

has been provided regarding eventual printing processes and related ink, which therefore were not included in the analysis.

Tab A1. PP-M LCI, PRODUCT 01 – Florette Shaker, PET Cup

	Table A1			Р	re-processing	Manufacturing		
Position	Description	Quantity	Weight (g)	Material	Material (SimaPro)	Processing	Processing (Original SimaPro dataset)	Processing variations (available FR datasets)
1	PET Cup	1	12,4	/	/	Heat sealing	/	/
1.1	PET Foil Lid	1	0,8	PET	Polyethylene terephthalate, granulate, amorphous {RER} production Cut-off, U	Extrusion of plastic film	Extrusion, plastic film {RER} extrusion, plastic film Cut-off, U	 Water, cooling, unspecified natural origin, FR; Electricity, medium voltage {FR} market for Cut-off, U
1,2	PET Shaker	1	11,6	PET	Polyethylene terephthalate, granulate, amorphous {RER} production Cut-off, U	Extrusion of plastic sheets and thermoformi ng	Extrusion of plastic sheets and thermoforming, inline {FR} processing Cut- off, U	1

• TABLE A2, PP-M LCI, PRODUCT 02 – Salad MDD, PET Tray

<u>Assumptions and limitations</u>: no information has been provided regarding eventual printing processes and related inks or other labels, which therefore were not included in the analysis.

Tab A2. PP-M LCI,	PRODUCT 02 -	Salad MDD,	PET Tray
-------------------	--------------	------------	----------

	Table A2			Р	re-processing		Manufacturin	g
Position	Description	Quantity	Weight (g)	Material	Material (SimaPro)	Processing	Processing (Original SimaPro dataset)	Processing variations (available FR datasets)
2	PET Tray	1	30	/	/	Inline manual closing	/	/
2.1	PET Lid	1	10	PET	Polyethylene terephthalate, granulate, amorphous {RER} production Cut-off, U	Extrusion of plastic sheets and thermoformi ng	Extrusion of plastic sheets and thermoforming, inline {FR} processing Cut- off, U	/
2.2	PET Bowl	1	20	PET	Polyethylene terephthalate, granulate, amorphous {RER} production Cut-off, U	Extrusion of plastic sheets and thermoformi ng	Extrusion of plastic sheets and thermoforming, inline {FR} processing Cut- off, U	/

• TABLE A3, PP-M LCI, PRODUCT 03 – Sour cream, Cup

<u>Assumptions and limitations</u>: the sealing process for components 3.2 and 3.3 and the closing process for components 3.1 and 3.3 have been omitted due to the lack of specific information retrieved in the data collection and suitable Ecoinvent datasets. The manufacturing process for the monolayer Aluminium Lid (3.2) was not declared, thus, sheet rolling was assumed as the most suitable option. Furthermore, no information has been provided regarding eventual printing processes and related ink, which therefore were not included in the analysis.

	Table A3			Р	re-processing	Manufacturing			
Position	Description	Quantity	Weight (g)	Material	Material (SimaPro)	Processing	Processing (Original SimaPro dataset)	Processing variations (available FR datasets)	
3	Cup	1	12,36	/	/	Inline closing and sealing	/	/	
3.1	PET Overcap	1	3,05	PET	Polyethylene terephthalate, granulate, amorphous {RER} production Cut- off, U	Extrusion of plastic sheets and thermoformi ng	Extrusion of plastic sheets and thermoforming, inline {FR} processing Cut- off, U	/	
3.2	Aluminium Lid	1	0,81	Aluminium	Aluminium alloy, AlMg3 {GLO} market for Cut- off, U	Sheet rolling	Sheet rolling, aluminium {RER} processing Cut- off, U	Water, unspecified natural origin, FR; Electricity, medium voltage {FR} market for Cut-off, U	
3.3	PP Bowl	1	8,5	РР	Polypropylene, granulate {RER} production Cut- off, U	Extrusion of plastic sheets and thermoformi ng	Extrusion of plastic sheets and thermoforming, inline {FR} processing Cut- off, U	/	

Tab A3. PP-M LCI, PRODUCT 03 – Sour cream, Cup

• TABLE A4, PP-M LCI, PRODUCT 04 – Greek yoghurt, Cup

<u>Assumptions and limitations</u>: the sealing process for components 4.2 and 4.3 and the closing process for components 4.1 and 4.3 have been omitted due to the lack of specific information retrieved in the data collection and suitable Ecoinvent datasets. The manufacturing process for the monolayer Aluminium Lid (4.2) was not declared, thus, sheet rolling was assumed as the most suitable option. Furthermore, no information has been provided regarding eventual printing processes and related ink, which therefore were not included in the analysis.

Tab A4. PP-M LCI, PRODUCT 04 – Greek yoghurt, Cup

	Table A4			P	re-processing	Manufacturing			
Position	Description	Quantity	Weight (g)	Material	Material (SimaPro)	Processing	Processing (Original SimaPro dataset)	Processing variations (available FR datasets)	
4	Cup	1	20,25	/	/	Inline closing and sealing	/	/	
4.1	PET Overcap	1	5	PET	Polyethylene terephthalate, granulate, amorphous {RER} production Cut- off, U	Extrusion of plastic sheets and thermoformi ng	Extrusion of plastic sheets and thermoforming, inline {FR} processing Cut- off, U	/	
4.2	Aluminium Lid	1	1,25	Aluminium	Aluminium alloy, AlMg3 {GLO} market for Cut- off, U	Sheet rolling	Sheet rolling, aluminium {RER} processing Cut- off, U	 Water, unspecified natural origin, FR; Electricity, medium voltage {FR} market for Cut-off, U 	
4.3	PP Bowl	1	14	РР	Polypropylene, granulate {RER} production Cut- off, U	Extrusion of plastic sheets and thermoformi ng	Extrusion of plastic sheets and thermoforming, inline {FR} processing Cut- off, U	/	

• TABLE A5, PP-M LCI, PRODUCT 05 – Pork chop, Wrapped Tray

<u>Note</u>: for the "In-shop products" food category a specific EPS tray was not supplied by the partners, therefore a suitable one for the reference product (2 pork chops) was selected by the authors. Specifically, the product is made up of an expanded polystyrene tray and a PVC film.

<u>Assumptions and limitations</u>: the wrapping process (manual or automatic) has been omitted as considered negligible and due to the absence of suitable Ecoinvent datasets.

Tab A5. PP-M LCI, PRODUCT 05 – Pork chop, Wrapped Tray

	Table A5			Pi	re-processing		Manufacturing	
Position	Description	Quantity	Weight (g)	Material	Material (SimaPro)	Processing	Processing (Original SimaPro dataset)	Processing variations (available FR datasets)
5	Wrapped Tray	1	13,8	/	/	Wrapping	/	/
5.1	PVC Wrapping Film	1	2,9	PVC	Polyvinylchloride, suspension polymerised {RER} polyvinylchloride production, suspension polymerisation Cut- off, U	Bubble extrusion of plastic film	Extrusion, plastic film {RER} extrusion, plastic film Cut-off, U	 Water, cooling, unspecified natural origin, FR; Electricity, medium voltage {FR} market for Cut-off, U
					Polystyrene,	Extrusion of plastic sheets and thermoforming	Extrusion of plastic sheets and thermoforming, inline {FR} processing Cut- off, U	1
5.2	PSE Tray	1	10,9	EPS	expandable {RER} production Cut-off, U	Foaming	Polymer foaming {RER} processing Cut-off, U	 Water, cooling, unspecified natural origin, FR; Electricity, medium voltage {FR} market for Cut-off, U

TABLE A6, PP-M LCI, PRODUCT 06 – Florette Mache, OPP Film

<u>Assumptions and limitations</u>: The laminating process (6.2) has been modified changing the typology of adhesive (Polyurethane adhesive instead of acrylic binder as specificated in data collection). The printing process has been omitted due to the absence of suitable Ecoinvent datasets, only the date of ink has been considered.

Tab A6. PP-M LCI, PRODUCT 05 – Pork chop, Wrapped Tray

	Table A6			Pr	e-processing		Manufacturin	g
Position	Description	Quantity	Weight (g)	Material	Material (SimaPro)	Processing	Processing (Original SimaPro dataset)	Processing variations (available FR datasets)
6	Bag	1	5,58	/	/	/		/
6.1	OPP Film	1	0,16	Ink	Printing ink, offset, without solvent, in 47% solution state {RER}	Printing Ink	/	/
6.2	OPP Film	1	0,32	Adhesive	Polyurethane adhesive {GLO} market for polyurethane adhesive Cut-off, U	Lamination	Laminating service, foil, with acrylic binder {RER} processing Cut- off, U	• Electricity, medium voltage {FR} market for Cut-off, U
6.3	PP Foil	1	5,1	РР	Polypropylene, granulate {RER} production Cut-off, U	Extrusion of plastic film	Extrusion, plastic film {RER} extrusion, plastic film Cut-off, U	 Water, cooling, unspecified natural origin, FR; Electricity, medium voltage {FR} market for Cut-off, U

• TABLE A7, PP-M LCI, PRODUCT 07 – Butter, Aluminium, & OPP Film

<u>Assumptions and limitations</u>: The manufacturing process for the layer Aluminium Lid (7.2) was not declared, thus, sheet rolling was assumed as the most suitable option.

Tab A7. PP-M LCI, PRODUCT 07 – Butter, Aluminium, & OPP Film

	Table A7			Pr	e-processing		Manufacturin	g
Position	Description	Quantity	Weight (g)	Material	Material (SimaPro)	Processing	Processing (Original SimaPro dataset)	Processing variations (available FR datasets)
7	Aluminium & OPP Film	1	1,95	/	/	Lamination	Laminating service, foil, with acrylic binder {RER} processing Cut-off, U	• Electricity, medium voltage {FR} market for Cut-off, U
7.1	OPP Film	1	1,28	РР	Polypropylene, granulate {RER} production Cut- off, U	Extrusion of plastic film	Extrusion, plastic film {RER} extrusion, plastic film Cut-off, U	 Water, cooling, unspecified natural origin, FR; Electricity, medium voltage {FR} market for Cut-off, U
7.2	Aluminium Lid	1	0,67	Aluminium	Aluminium alloy, AlMg3 {GLO} market for Cut- off, U	Sheet rolling	Sheet rolling, aluminium {RER} processing Cut- off, U	 Water, unspecified natural origin, FR; Electricity, medium voltage {FR} market for Cut-off, U

• TABLE A8, PP-M LCI, PRODUCT 08 – Grated cheese, OPA & LDPE Film

<u>Assumptions and limitations</u>: The printing process has been omitted due to the absence of suitable Ecoinvent datasets, only the date of ink has been considered.

Tab A8. PP-M LCI, PRODUCT 08 – Grated cheese, OPA & LDPE Film

	Table A8			Pr	e-processing		Manufacturin	g
Position	Description	Quantity	Weight (g)	Material	Material (SimaPro)	Processing	Processing (Original SimaPro dataset)	Processing variations (available FR datasets)
8	Grated Cheese Bag	1	5,06	/	/	/		/
8.1	OPA & LDPE Film	1	0,11	Ink	Printing ink, offset, without solvent, in 47% solution state {RER}	Printing Ink	/	/
8.2	Complexing Film	1	0,15	Adhesive	Acrylic binder, with water, in 54% solution state {RER} Cut-off, U	Lamination	Laminating service, foil, with acrylic binder {RER} processing Cut- off, U	• Electricity, medium voltage {FR} market for Cut-off, U
8.3	LDPE Foil	1	3,5	LDPE	Polyethylene terephthalate, granulate, amorphous {RER} production Cut- off, U	Extrusion of plastic film	Extrusion, plastic film {RER} extrusion, plastic film Cut-off, U	 Water, cooling, unspecified natural origin, FR; Electricity, medium voltage {FR} market for Cut-off, U
8.4	OPA Foil	1	1,3	PA	Nylon 6 {RER} production Cut-off, U	Extrusion of plastic film	Extrusion, plastic film {RER} extrusion, plastic film Cut-off, U	 Water, cooling, unspecified natural origin, FR; Electricity, medium voltage {FR} market for Cut-off, U

Funded by the European Union

• TABLE A9, PP-M LCI, PRODUCT 09 – Peanut curl, OPP Film

<u>Assumptions and limitations</u>: The Metallization process for OPP film (9.2) has been omitted due to the lack of specific information retrieved in the data collection (type of metal and type of process). The printing process has been omitted due to the absence of suitable Ecoinvent datasets, only the date of ink has been considered.

Tarla	10			DDODUCT	00	Description	~	
I GD J	A9.	PP-M	LCI,	, PRODUCT	09 -	Peanul	curi,	

	Table A9			Pr	e-processing		Manufacturin	g
Position	Description	Quantity	Weight (g)	Material	Material Material (SimaPro)		Processing (Original SimaPro dataset)	Processing variations (available FR datasets)
9	Bag	1	5,57	/	/	/		/
9.1	OPP Film	1	0,414	Ink	Printing ink, offset, without solvent, in 47% solution state {RER}	Printing Ink	/	/
9.2	OPP Film	1	0,296	Adhesive	Acrylic binder, with water, in 54% solution state {RER} Cut-off, U	Lamination	Laminating service, foil, with acrylic binder {RER} processing Cut-off, U	• Electricity, medium voltage {FR} market for Cut-off, U
9.3	PP Foil	1	4,86	РР	Polypropylene, granulate {RER} production Cut- off, U	Extrusion of plastic film	Extrusion, plastic film {RER} extrusion, plastic film Cut-off, U	 Water, cooling, unspecified natural origin, FR; Electricity, medium voltage {FR} market for Cut-off, U

• TABLE A10, PP-M LCI, PRODUCT 10 – Savory biscuits, OPP & Cardboard

<u>Assumptions and limitations</u>: The metallization process for OPP film (10.2) has been omitted due to the lack of specific information retrieved in the data collection (type of metal and type of process).

For the Cardboard box (10.1) has been used a dataset for production of a Folding boxboard carton that haven't specific data on recycled cardboard.

Tab A10. PP-M LCI, PRODUCT 10 – Savory biscuits, OPP & Cardboard

	Table A10			Pr	re-processing		Manufacturin	g
Position	Description	Quantity	Weight (g)	Material	Material (SimaPro)	Processing	Processing (Original SimaPro dataset)	Processing variations (available FR datasets)
10	Savory Biscuit	1	25,75	/	/	/		/
10.1	Cardboard Box	1	24			Flat cut	Folding boxboard carton production {RER} production Cut-off, U	Variation amount of Varnish and Ink Electricity, medium voltage {FR} market for Cut-off, U
10.2	OPP Film	1	0,15	Adhesive	Acrylic binder, with water, in 54% solution state {RER} Cut-off, U	Lamination	Laminating service, foil, with acrylic binder {RER} processing Cut-off, U	• Electricity, medium voltage {FR} market for Cut-off, U
10.3	PP Foil	1	1,6	РР	Polypropylene, granulate {RER} production Cut- off, U	Extrusion of plastic film	Extrusion, plastic film {RER} extrusion, plastic film Cut-off, U	 Water, cooling, unspecified natural origin, FR; Electricity, medium voltage {FR} market for Cut-off, U

END-OF-LIFE LCI

Regarding the LCI of the end-of-life phase, a dedicated waste scenario has been defined for each material. Each waste scenario is composed of the different waste treatments i.e. recycling, incineration and landfill. The percentage of wasted material destined for each waste treatment was defined on the basis of data relating to waste management in the French context; the sources are indicated in the "data source" column (Tab. B). Furthermore, the table below shows the process with which each waste treatment is modelled in SimaPro. The specific waste scenario for each product consists of a single waste process if the product is mono-material, or of the combination of two or more waste processes if the product is made up of components in different materials; in the latter case, the percentages of material destined for each waste process are defined on the basis of weight percentage of each material on the packaging composition.

• TABLE B, EOL LCI

Tab B. END-OF-LIFE LCI

				Table B			End of Life	
		Waste type	Material % per waste treatement	Data description	Data source	Waste treatement	Waste treatment (SimaPro dataset)	Notes
			27	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	PA Recycling	PA (waste treatment) {GLO} recycling of PA Cut- off, U	
	Vaste process	PA	44	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	PA Incineration	Waste plastic, mixture {CH} treatment of waste plastic, mixture, municipal incineration Cut-off, U	
	-		29	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	PA Landfill	Waste plastic, mixture {CH} treatment of waste plastic, mixture, sanitary landfill Cut-off, U	
	s		27	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	PET Recycling	PET (waste treatment) {GLO} recycling of PET Cut-off, U	
	Waste proces	PET	44	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	PET Incineration	Waste polyethylene terephthalate {CH} treatment of waste polyethylene terephthalate, municipal incineration Cut-off, U	
			29	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	PET Landfill	Waste polyethylene terephthalate {CH} treatment of waste polyethylene terephthalate, sanitary landfill Cut-off, U	
	S		27	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	PP Recycling	PP (waste treatment) {GLO} recycling of PP Cut- off, U	
	Waste proces	РР	44	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	PP Incineration	Waste polypropylene {CH} treatment of, municipal incineration Cut-off, U	
			29	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	PP Landfill	Waste polypropylene {CH} treatment of, sanitary landfill Cut-off, U	
nario	S		27	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	PVC Recycling	PVC (waste treatment) {GLO} recycling of PVC Cut-off, U	
Waste sce	Waste proces	PVC	44	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	PVC Incineration	Waste polyvinylchloride {CH} treatment of, municipal incineration Cut-off, U	
			29	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	PVC Landfill	Waste polyvinylchloride {CH} treatment of, sanitary landfill Cut-off, U	
	S		27	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	EPS Recycling	PS (waste treatment) {GLO} recycling of PS Cut- off, U	
	Waste proces	EPS	44	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	EPS Incineration	Waste expanded polystyrene {CH} treatment of, municipal incineration Cut-off, U	
			29	France post-consumer plastics packaging waste treatment	Plastics Europe, 2022	EPS Landfill	Waste polystyrene {CH} treatment of, sanitary landfill Cut-off, U	datasets for PS
	process	Aluminium	58	France post-consumer aluminium packaging waste treatment	Citeo Adelphe, 2021	Aluminium Recycling	Aluminium (waste treatment) {GLO} recycling of aluminium Cut-off, U	
	Waste		42	France MSW treatment	Eurostat, 2018	Municipal Waste (62% Incineration + 38% Landfill	Municipal solid waste {FR} market for municipal solid waste Cut-off, U	
	Waste process	Aluminium&OPP	100	France MSW treatment	Eurostat, 2018	Municipal Waste	Municipal solid waste {FR} Cut-off, U	
	process	Cardboard	72	France post-consumer cardboard packaging waste treatment	Citeo Adelphe, 2021	Paper Recycling	Paper (waste treatment) {GLO} recycling of paper Cut-off, U	
	Waste	CarubUdru	28	France MSW treatment	Eurostat, 2018	Municipal Waste	Waste paperboard {FR} market for waste paperbord Cut-off, U	

Funded by the European Union

END-OF-LIFE MODELLING CHOICES

To date, a cut-off approach has been applied to the end-of-life modeling which excludes from the calculation of the impact those processes that bring environmental benefits. This means that credits and impacts connected to recycling and secondary energy derived from energy recovery processes are equal to zero (Fig.2). The impacts that are calculated in the end-of-life scenario therefore concern incineration and disposal in landfill.

Figure 2: An example of waste process

In order to calculate credits and impacts connected to recycling and energy recovery in the PEF Method, the use of the Circular Footprint Formula (CFF) is prescribed⁹. CFF is composed of three parts corresponding, respectively, to material, energy and disposal (Fig. 3).

Figure 3: Circular Footprint Formula (CFF)

⁹ Zampori, L. and Pant, R., Suggestions for updating the Product Environmental Footprint (PEF) method, EUR 29682 EN, Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-76-00654-1, doi:10.2760/424613, JRC11595. § 4.4.8.1 The Circular Footprint Formula (CFF)

The CFF allows the connection with subsequent and preceding life cycles via debiting (Fig. 4, left) and crediting (Fig. 4, right) which in the cut-off approach, are not considered¹⁰.

Figure 4: CFF debiting (left) and crediting (right)

Circular Footprint Formula is likely to be implemented in the following deliverable thanks to the recent release of the new EF 3.1 database¹¹ containing the needed datasets for the calculation in Sima Pro.

6. IMPACT ASSESSMENT RESULTS

PEF results

In this section, the impact assessment results are presented through 16 environmental impact indicators defined by the PEF method as described above at §4.3. The selected calculation method in SimaPro for the impact assessment is the EF 3.0, as defined in the Product Environmental Footprint.

For each product, results are presented as follow:

- **Characterised** results of all EF impact categories: the multiple impact contributions are transformed into results for each of the 16 impact categories through characterization factors. Each category has a specific unit of measure.
- **Normalised** and **weighted** results: by weighting the different EF impact categories through appropriate factors the relative shares of the impacts of the analysed system can be expressed in Pt. In this way it is possible to establish comparisons among different contributions.
- Weighted results as **single score** in µPt for all the life cycle stages (Preprocessing and Manufacturing + End-of-Life): the weighted results are then aggregated into an all-encompassing indicator for each life cycle stage.

¹¹ Environmental Footprint database 3.1: https://simapro.com/products/environmental-footprint-database/

¹⁰ Wolf, M. A., The Circular Footprint Formula (CFF) and its practical application training. Environmental Footprint (EF) transition phase, 2019. Webinar available in: https://ec.europa.eu/environment/eussd/videos/2019-10-08%2016.01%20The%20Circular%20Footprint%20Formula.mp4

PRODUCT 01 – Florette Shaker, PET Cup

Characterised results

• Characterised results of all EF impact categories

Tab 4. Characterised results PRODUCT 01 - Florette Shaker, PET Cup

Impact category	Unit	Total	01. Florette Shaker_PET Cup – PP+M	01. Florette Shaker_PET Cup – EoL
Climate change	kg CO2 eq	5,41E-02	4,27E-02	1,14E-02
Ozone depletion	kg CFC11 eq	2,00E-07	2,00E-07	2,10E-11
Ionising radiation	kBq U-235 eq	1,21E-02	1,21E-02	9,26E-06
Photochemical ozone formation	kg NMVOC eq	1,29E-04	1,25E-04	3,80E-06
Particulate matter	disease inc.	1,73E-09	1,71E-09	2,16E-11
Human toxicity, non-cancer	CTUh	5,02E-10	4,77E-10	2,50E-11
Human toxicity, cancer	CTUh	2,95E-11	2,76E-11	1,87E-12
Acidification	mol H+ eq	1,79E-04	1,76E-04	2,78E-06
Eutrophication, freshwater	kg P eq	8,58E-06	8,56E-06	1,50E-08
Eutrophication, marine	kg N eq	4,34E-05	3,38E-05	9,66E-06
Eutrophication, terrestrial	mol N eq	3,49E-04	3,34E-04	1,46E-05
Ecotoxicity, freshwater	CTUe	5,66E-01	5,61E-01	4,56E-03
Land use	Pt	1,07E-01	1,05E-01	2,34E-03
Water use	m3 depriv.	1,98E-02	1,98E-02	2,64E-05
Resource use, fossils	MJ	1,14E+00	1,14E+00	1,62E-03
Resource use, minerals and metals	kg Sb eq	4,97E-07	4,97E-07	3,74E-10

Weighted results

• Normalised and weighted results

Figure 5: Normalised and weighted results - PRODUCT 01 - Florette Shaker, PET Cup

Funded by the European Union

Single score

- Weighted results as single score in µPt for all the life cycle stages (Pre-• processing and manufacturing: 01. Florette Shaker_PET Cup - PP+M; End-of-Life: 01. Florette Shaker_PET Cup – EoL).
- For product 01 Florette Shaker, PET Cup, the most relevant life cycle stage • is PP+M (93,6%). The most relevant processes (processes details are shown in table A1) are related to component 1.2 PET Shaker and are Polyethylene terephthalate pre-processing and manufacturing.

Figure 6: Weighted results as single score in µPt - PRODUCT 01 - Florette Shaker, PET Cup

PRODUCT 02 – Salad MDD, PET Tray

Characterised results

• Characterised results of all EF impact categories

Tab 5. Characterised results PRODUCT 02 – Salad MDD, PET Tray

Impact category	Unit	Total	02. Salad MDD_PET Tray – PP+M	02. Salad MDD_PET Tray – EoL
Climate change	kg CO2 eq	1,31E-01	1,04E-01	2,77E-02
Ozone depletion	kg CFC11 eq	4,85E-07	4,85E-07	5,08E-11
lonising radiation	kBq U-235 eq	3,01E-02	3,00E-02	2,24E-05
Photochemical ozone formation	kg NMVOC eq	3,14E-04	3,04E-04	9,20E-06
Particulate matter	disease inc.	4,19E-09	4,14E-09	5,23E-11
Human toxicity, non-cancer	CTUh	1,22E-09	1,16E-09	6,06E-11
Human toxicity, cancer	CTUh	7,13E-11	6,68E-11	4,52E-12
Acidification	mol H+ eq	4,35E-04	4,28E-04	6,72E-06
Eutrophication, freshwater	kg P eq	2,08E-05	2,08E-05	3,64E-08
Eutrophication, marine	kg N eq	1,05E-04	8,19E-05	2,34E-05
Eutrophication, terrestrial	mol N eq	8,45E-04	8,10E-04	3,54E-05
Ecotoxicity, freshwater	CTUe	1,37E+00	1,36E+00	1,10E-02
Land use	Pt	2,50E-01	2,44E-01	5,66E-03
Water use	m3 depriv.	4,98E-02	4,97E-02	6,40E-05
Resource use, fossils	MJ	2,78E+00	2,78E+00	3,91E-03
Resource use, minerals and metals	kg Sb eq	1,21E-06	1,21E-06	9,04E-10

Weighted results

• Normalised and weighted results

Figure 7: Normalised and weighted results - PRODUCT 02 – Salad MDD, PET Tray

Funded by the European Union

Single score

- Weighted results as single score in μPt for all the life cycle stages (Preprocessing and manufacturing: 02. Salad MDD_PET Tray – PP+M; End-of-Life: 02. Salad MDD_PET Tray – EoL).
- For product 02 Salad MDD, PET Tray, the most relevant life cycle stage is PP+M (93,6%). The most relevant processes (processes details are shown in table A2) are related to component 2.2 PET Bowl and are Polyethylene terephthalate pre-processing and manufacturing.

PRODUCT 03 – Sour cream, Cup

Characterised results

• Characterised results of all EF impact categories

Tab 6. Characterised results PRODUCT 03 – Sour cream, Cup

Impact category	Unit	Total	03. Sour cream_Cup – PP+M	03. Sour cream_Cup – EoL
Climate change	kg CO2 eq	4,98E-02	3,70E-02	1,28E-02
Ozone depletion	kg CFC11 eq	4,97E-08	4,97E-08	2,23E-11
Ionising radiation	kBq U-235 eq	1,15E-02	1,14E-02	8,99E-06
Photochemical ozone formation	kg NMVOC eq	1,16E-04	1,12E-04	3,07E-06
Particulate matter	disease inc.	2,10E-09	2,08E-09	2,15E-11
Human toxicity, non-cancer	CTUh	4,02E-10	3,85E-10	1,68E-11
Human toxicity, cancer	CTUh	2,66E-11	2,47E-11	1,88E-12
Acidification	mol H+ eq	1,52E-04	1,50E-04	2,19E-06
Eutrophication, freshwater	kg P eq	6,88E-06	6,86E-06	2,58E-08
Eutrophication, marine	kg N eq	3,21E-05	2,79E-05	4,23E-06
Eutrophication, terrestrial	mol N eq	2,91E-04	2,79E-04	1,12E-05
Ecotoxicity, freshwater	CTUe	4,35E-01	4,25E-01	9,99E-03
Land use	Pt	6,78E-02	6,54E-02	2,37E-03
Water use	m3 depriv.	1,95E-02	1,94E-02	3,03E-05
Resource use, fossils	MJ	1,16E+00	1,16E+00	1,60E-03
Resource use, minerals and metals	kg Sb eq	3,30E-07	3,30E-07	4,11E-10

Weighted results

• Normalised and weighted results

Figure 9: Normalised and weighted results - PRODUCT 03 - Sour cream, Cup

Funded by the European Union

Single score

- Weighted results as single score in µPt for all the life cycle stages (Preprocessing and manufacturing: 03. Sour cream_Cup – PP+M; End-of-Life: 03. Sour cream_Cup – EoL).
- For product 03 Sour cream, Cup, the most relevant life cycle stage is PP+M (92,2%). The most relevant processes (processes details are shown in table A3) are related to component 3.3 PP Bowl and are Polypropylene pre-processing and manufacturing.

PRODUCT 04 - Greek yoghurt, Cup

Characterised results

Characterised results of all EF impact categories •

Tab 7. Characterised results PRODUCT 04 – Greek yoghurt, Cup

Impact category	Unit	Total	04. Greek yoghurt_Cup – PP+M	04. Greek yoghurt_Cup – EoL
Climate change	kg CO2 eq	8,12E-02	6,01E-02	2,11E-02
Ozone depletion	kg CFC11 eq	8,30E-08	8,30E-08	3,64E-11
lonising radiation	kBq U-235 eq	1,88E-02	1,88E-02	1,47E-05
Photochemical ozone formation	kg NMVOC eq	1,88E-04	1,83E-04	5,04E-06
Particulate matter	disease inc.	3,34E-09	3,30E-09	3,51E-11
Human toxicity, non-cancer	CTUh	6,44E-10	6,16E-10	2,76E-11
Human toxicity, cancer	CTUh	4,23E-11	3,92E-11	3,08E-12
Acidification	mol H+ eq	2,46E-04	2,42E-04	3,60E-06
Eutrophication, freshwater	kg P eq	1,11E-05	1,10E-05	4,10E-08
Eutrophication, marine	kg N eq	5,21E-05	4,51E-05	6,98E-06
Eutrophication, terrestrial	mol N eq	4,70E-04	4,52E-04	1,84E-05
Ecotoxicity, freshwater	CTUe	6,96E-01	6,80E-01	1,56E-02
Land use	Pt	1,10E-01	1,06E-01	3,88E-03
Water use	m3 depriv.	3,19E-02	3,18E-02	4,93E-05
Resource use, fossils	MJ	1,90E+00	1,90E+00	2,61E-03
Resource use, minerals and metals	kg Sb eq	5,36E-07	5,35E-07	6,71E-10

Weighted results

Normalised and weighted results •

Figure 11: Normalised and weighted results - PRODUCT 04 - Greek yoghurt, Cup

Funded by the European Union

Single score

- Weighted results as single score in µPt for all the life cycle stages (Preprocessing and manufacturing: 04. Greek yoghurt_Cup – PP+M; End-of-Life: 04. Greek yoghurt_Cup – EoL).
- For product 04 Greek yoghurt, Cup, the most relevant life cycle stage is PP+M (92,1%). The most relevant processes (processes details are shown in table A4) are related to component 4.3 PP Bowl and are Polypropylene pre-processing and manufacturing.

PRODUCT 05 – Pork chop, Wrapped Tray

Characterised results

• Characterised results of all EF impact categories

Tab 8. Characterised results PRODUCT 05 – Pork chop, Wrapped Tray

Impact category	Unit	Total	05. Pork chop_Wrapped Tray - PP+M	05. Pork chop_Wrapped Tray – EoL
Climate change	kg CO2 eq	7,40E-02	5,54E-02	1,86E-02
Ozone depletion	kg CFC11 eq	4,87E-09	4,38E-09	4,97E-10
lonising radiation	kBq U-235 eq	1,59E-02	1,57E-02	1,17E-04
Photochemical ozone formation	kg NMVOC eq	2,84E-04	2,78E-04	5,89E-06
Particulate matter	disease inc.	2,22E-09	2,16E-09	6,06E-11
Human toxicity, non-cancer	CTUh	3,40E-10	2,71E-10	6,90E-11
Human toxicity, cancer	CTUh	1,92E-11	1,59E-11	3,33E-12
Acidification	mol H+ eq	2,13E-04	2,06E-04	6,98E-06
Eutrophication, freshwater	kg P eq	5,12E-06	4,73E-06	3,88E-07
Eutrophication, marine	kg N eq	3,83E-05	3,38E-05	4,53E-06
Eutrophication, terrestrial	mol N eq	3,62E-04	3,41E-04	2,15E-05
Ecotoxicity, freshwater	CTUe	5,40E-01	2,65E-01	2,75E-01
Land use	Pt	7,12E-02	6,53E-02	5,97E-03
Water use	m3 depriv.	4,18E-02	4,09E-02	8,12E-04
Resource use, fossils	MJ	1,47E+00	1,46E+00	1,20E-02
Resource use, minerals and metals	kg Sb eq	1,51E-07	1,39E-07	1,14E-08

Weighted results

• Normalised and weighted results

Figure 13: Normalised and weighted results - PRODUCT 05 – Pork chop, Wrapped Tray

Funded by the European Union

Single score

- Weighted results as single score in µPt for all the life cycle stages (Preprocessing and manufacturing: 05. Pork chop_Wrapped Tray – PP+M; End-of-Life: 05. Pork chop_Wrapped Tray – EoL).
- For product 05 Pork chop, Wrapped Tray, the most relevant life cycle stage is PP+M (88,2%). The most relevant processes (processes details are shown in table A5) are related to component 5.2 PSE Tray and are Expandable Polystyrene pre-processing and manufacturing.

Figure 14: Weighted results as single score in μ Pt - PRODUCT 05 – Pork chop, Wrapped Tray

PRODUCT 06 - Florette Mache, OPP Film

Characterised results

• Characterised results of all EF impact categories

Tab 9. Characterised results PRODUCT 06 – Florette Mache, OPP Film

Impact category	Unit	Total	06. Florette Mache_OPP Film – PP+M	06. Florette Mache_OPP Film – EoL
Climate change	kg CO2 eq	2,15E-02	1,50E-02	6,42E-03
Ozone depletion	kg CFC11 eq	5,07E-10	5,03E-10	3,44E-12
Ionising radiation	kBq U-235 eq	4,40E-03	4,39E-03	2,13E-06
Photochemical ozone formation	kg NMVOC eq	4,92E-05	4,79E-05	1,36E-06
Particulate matter	disease inc.	6,82E-10	6,72E-10	9,06E-12
Human toxicity, non-cancer	CTUh	3,05E-10	2,99E-10	6,06E-12
Human toxicity, cancer	CTUh	2,38E-11	2,30E-11	8,58E-13
Acidification	mol H+ eq	5,52E-05	5,43E-05	8,99E-07
Eutrophication, freshwater	kg P eq	2,01E-06	2,00E-06	7,73E-09
Eutrophication, marine	kg N eq	1,30E-05	1,19E-05	1,05E-06
Eutrophication, terrestrial	mol N eq	1,10E-04	1,05E-04	4,67E-06
Ecotoxicity, freshwater	CTUe	1,48E-01	1,47E-01	1,31E-03
Land use	Pt	5,97E-02	5,86E-02	1,04E-03
Water use	m3 depriv.	1,05E-02	1,04E-02	1,15E-05
Resource use, fossils	MJ	5,33E-01	5,33E-01	6,79E-04
Resource use, minerals and metals	kg Sb eq	7,56E-08	7,55E-08	1,22E-10

Weighted results

• Normalised and weighted results

Figure 15: Normalised and weighted results - PRODUCT 06 - Florette Mache, OPP Film

Funded by the European Union

Single score

- Weighted results as single score in µPt for all the life cycle stages (Pre-• processing and manufacturing: 06. Florette Mache_OPP Film - PP+M; End-of-Life: 06. Florette Mache_OPP Film – EoL)
- For product 06- Florette Mache_OPP Film, the most relevant life cycle stage • is PP+M (90,6%). The most relevant processes (processes details are shown in table A6) are related to component 6.2 OPP Film and are Polypropylene pre-processing and manufacturing.

Figure 16: Weighted results as single score in μ Pt - PRODUCT 06 – Florette Mache, OPP Film

PRODUCT 07 – Butter, Aluminium, & OPP Film

Characterised results

• **Characterised** results of all EF impact categories Tab 10. Characterised results PRODUCT 07 – Butter, Aluminium, & OPP Film

07. Butter_Al&OPP 07. Butter_Al&OPP Film – PP+M Film – EoL Impact category Unit Total 1,22E-03 kg CO2 eq 1,14E-02 1,02E-02 Climate change Ozone depletion kg CFC11 eq 1,21E-10 1,18E-10 2,54E-12 lonising radiation kBq U-235 eq 3,81E-03 3,81E-03 2,42E-06 Photochemical ozone formation kg NMVOC 3,64E-05 3,55E-05 9,17E-07 eq disease inc. 1,41E-11 Particulate matter 9,83E-10 9,69E-10 CTUh Human toxicity, non-cancer 1,77E-10 1,67E-10 9,23E-12 CTUh Human toxicity, cancer 1,18E-11 1,15E-11 3,63E-13 Acidification mol H+ eq 5,10E-05 5,04E-05 6,19E-07 Eutrophication, freshwater kg P eq 2,79E-06 2,73E-06 5,97E-08 Eutrophication, marine kg N eq 1,10E-05 9,47E-06 1,57E-06 Eutrophication, terrestrial mol N eq 9,95E-05 9,69E-05 2,59E-06 Ecotoxicity, freshwater CTUe 4,49E-02 4,00E-02 4,88E-03 Land use Pt 3,17E-02 3,08E-02 9,11E-04 2,64E-03 2,62E-03 2,44E-05 Water use m3 depriv. Resource use, fossils MJ 2,51E-01 2,50E-01 9,63E-04 Resource use, minerals and kg Sb eq 7,76E-08 7,74E-08 1,92E-10 metals

Weighted results

• Normalised and weighted results

Figure 17: Normalised and weighted results - PRODUCT 07 – Butter, Aluminium, & OPP Film

Funded by the European Union

Single score

- Weighted results as single score in μ Pt for all the life cycle stages (Preprocessing and manufacturing: 07. Butter_Al&OPP Film PP+M; End-of-Life: 07. Butter_Al&OPP Film EoL)
- For product 07 Butter_Al&OPP Film, the most relevant life cycle stage is PP+M (96,1%). The most relevant processes (processes details are shown in table A7) are related to component 7.2 Aluminium Lid and are Aluminium pre-processing and manufacturing.

PRODUCT 08 – Grated cheese, OPA & LDPE Film

Characterised results

• Characterised results of all EF impact categories

Tab 11. Characterised results PRODUCT 08 – Grated cheese, OPA & LDPE Film

Impact category	Unit	Total	08. Grated cheese OPA&LDPE Film – PP+M	08. Grated cheese OPA&LDPE Film – EoL
Climate change	kg CO2 eq	3,33E-02	2,68E-02	6,44E-03
Ozone depletion	kg CFC11 eq	5,73E-08	5,73E-08	1,18E-11
lonising radiation	kBq U-235 eq	3,17E-03	3,17E-03	4,05E-06
Photochemical ozone formation	kg NMVOC	8,33E-05	8,19E-05	1,42E-06
Particulate matter	disease inc.	1,15E-09	1,14E-09	9,31E-12
Human toxicity, non-cancer	CTUh	2,91E-10	2,84E-10	7,52E-12
Human toxicity, cancer	CTUh	1,52E-11	1,44E-11	8,66E-13
Acidification	mol H+ eq	1,04E-04	1,03E-04	1,01E-06
Eutrophication, freshwater	kg P eq	3,11E-06	3,09E-06	1,44E-08
Eutrophication, marine	kg N eq	2,45E-05	2,26E-05	1,89E-06
Eutrophication, terrestrial	mol N eq	2,22E-04	2,17E-04	4,98E-06
Ecotoxicity, freshwater	CTUe	1,25E-01	1,20E-01	4,99E-03
Land use	Pt	6,55E-02	6,45E-02	1,01E-03
Water use	m3 depriv.	1,05E-02	1,05E-02	2,53E-05
Resource use, fossils	MJ	4,94E-01	4,93E-01	8,47E-04
Resource use, minerals and metals	kg Sb eq	1,91E-07	1,91E-07	2,56E-10

Weighted results

• Normalised and weighted results

Figure 19: Normalised and weighted results - PRODUCT 08 – Grated cheese, OPA & LDPE Film

Funded by the European Union

Single score

- Weighted results as single score in µPt for all the life cycle stages (Preprocessing and manufacturing: 08. Grated cheese_OPA&LDPE Film – PP+M; End-of-Life: 08. Grated cheese_OPA&LDPE Film – EoL).
- For product 08. Grated cheese_OPA&LDPE Film, the most relevant life cycle stage is PP+M (92,8%). The most relevant processes (processes details are shown in table A8) are related to component 8.3 LDPE Foil and are Polyethylene terephthalate pre-processing and manufacturing.

Figure 20: Weighted results as single score in μ Pt - PRODUCT 08 – Grated cheese, OPA & LDPE Film

PRODUCT 09 – Peanut curl, OPP Film

Characterised results

• Characterised results of all EF impact categories

Tab 12. Characterised results PRODUCT 09 – Peanut curl, OPP Film

Impact category	Unit	Total	09. Peanut curl_OPP Film – PP+M	09. Peanut curl_OPP Film – EoL
Climate change	kg CO2 eq	2,13E-02	1,49E-02	6,41E-03
Ozone depletion	kg CFC11 eq	1,00E-09	9,99E-10	3,43E-12
lonising radiation	kBq U-235 eq	3,60E-03	3,60E-03	2,12E-06
Photochemical ozone formation	kg NMVOC eq	4,79E-05	4,66E-05	1,36E-06
Particulate matter	disease inc.	6,45E-10	6,36E-10	9,04E-12
Human toxicity, non-cancer	CTUh	2,60E-10	2,54E-10	6,05E-12
Human toxicity, cancer	CTUh	1,91E-11	1,83E-11	8,56E-13
Acidification	mol H+ eq	5,32E-05	5,23E-05	8,98E-07
Eutrophication, freshwater	kg P eq	1,98E-06	1,97E-06	7,71E-09
Eutrophication, marine	kg N eq	1,35E-05	1,24E-05	1,04E-06
Eutrophication, terrestrial	mol N eq	1,06E-04	1,02E-04	4,66E-06
Ecotoxicity, freshwater	CTUe	1,49E-01	1,48E-01	1,31E-03
Land use	Pt	7,55E-02	7,44E-02	1,04E-03
Water use	m3 depriv.	9,84E-03	9,83E-03	1,15E-05
Resource use, fossils	MJ	5,00E-01	5,00E-01	6,78E-04
Resource use, minerals and metals	kg Sb eq	7,23E-08	7,21E-08	1,22E-10

Weighted results

• Normalised and weighted results

Figure 21: Normalised and weighted results - PRODUCT 09 - Peanut curl, OPP Film

Funded by the European Union

Single score

- Weighted results as single score in μ Pt for all the life cycle stages (Preprocessing and manufacturing: 09. Peanut curl_OPP Film – PP+M; End-of-Life: 09. Peanut curl_OPP Film – EoL).
- For product 09. Peanut curl_OPP Film, the most relevant life cycle stage is PP+M (90,2%). The most relevant processes (processes details are shown in table A9 are related to component 9.2 OPP Film and are Polypropylene pre-processing and manufacturing.

Figure 22: Weighted results as single score in μ Pt - PRODUCT 09 – Peanut curl, OPP Film

PRODUCT 10 – Savory biscuits, OPP & Cardboard

Characterised results

• Characterised results of all EF impact categories

Tab 13. Characterised results PRODUCT 10 – Savory biscuits, OPP & Cardboard

Impact category	Unit	Total	10. Savory biscuits OPP&Cardboard – PP+M	10. Savory biscuits OPP&Cardboard – EoL
Climate change	kg CO2 eq	5,17E-02	4,46E-02	7,05E-03
Ozone depletion	kg CFC11 eq	1,27E-09	1,26E-09	9,16E-12
lonising radiation	kBq U-235 eq	1,11E-02	1,11E-02	8,36E-06
Photochemical ozone formation	kg NMVOC eq	1,61E-04	1,56E-04	4,27E-06
Particulate matter	disease inc.	5,38E-09	5,33E-09	5,32E-11
Human toxicity, non-cancer	CTUh	7,71E-10	7,41E-10	3,00E-11
Human toxicity, cancer	CTUh	2,53E-11	2,40E-11	1,27E-12
Acidification	mol H+ eq	2,31E-04	2,29E-04	2,53E-06
Eutrophication, freshwater	kg P eq	1,88E-05	1,87E-05	3,94E-08
Eutrophication, marine	kg N eq	5,85E-05	5,27E-05	5,81E-06
Eutrophication, terrestrial	mol N eq	5,03E-04	4,93E-04	9,98E-06
Ecotoxicity, freshwater	CTUe	2,49E-01	2,28E-01	2,06E-02
Land use	Pt	2,64E+00	2,64E+00	3,02E-03
Water use	m3 depriv.	1,93E-02	1,91E-02	1,85E-04
Resource use, fossils	MJ	7,89E-01	7,86E-01	3,19E-03
Resource use, minerals and metals	kg Sb eq	1,53E-07	1,52E-07	7,11E-10

Weighted results

• Normalised and weighted results

Figure 23: Normalised and weighted results - PRODUCT 10 - Savory biscuits, OPP & Cardboard

Single score

- Weighted results as single score in μPt for all the life cycle stages (Preprocessing and manufacturing: 10. Savory bisc_OPP&Cardboard – PP+M; Endof-Life: 10. Savory bisc_OPP&Cardboard – EoL).
- For product 10. Savory bisc_OPP&Cardboard, the most relevant life cycle stage is PP+M (95,4%). The most relevant processes (processes details are shown in table A10) are related to component 10.1 Cardboard Box and are Folding boxboard carton pre-processing and manufacturing.

Figure 24: Weighted results as single score in μ Pt - PRODUCT 10 – Savory biscuits, OPP & Cardboard

7. INTERPRETING PEF RESULTS 7.1. Relevant impact categories

In the previous section, characterized, normalised and weighted results for each EF impact category have been presented together with the single score for each life cycle stage. In this paragraph, the most relevant impact categories will be highlighted. As prescribed in the PEF method, impact categories cumulatively contributing at least 80% of the total environmental impact will be identified for each product based on the normalised and weighted results.

Below, for each product, a table is provided in which most relevant impact categories are ranked in descending order of impact on the total life cycle.

PRODUCT 01 – Florette Shaker, PET Cup

Tab 14. Most relevant impact categories PRODUCT 01 – Florette Shaker, PET Cup					
Label	Total (µPt)	%			
Resource use, fossils	1.46	27.9%			
Climate change	1.41	26.9%			
Resource use, minerals and metals	0.59	11.3%			
Particulate matter	0.26	5.0%			
Ecotoxicity, freshwater	0.25	4.9%			
Ozone depletion	0.24	4.5%			
Sum		80.5%			

PRODUCT 02 – Salad MDD, PET Tray

Tab 15. Most relevant impact categories - PRODUCT 02 - Salad

	MD	D, PET Tray
Label	Total (µPt)	%
Resource use, fossils	3.56	28.0%
Climate change	3.41	26.9%
Resource use, minerals and metals	1.43	11.3%
Particulate matter	0.63	5.0%
Ecotoxicity, freshwater	0.62	4.9%
Ozone depletion	0.57	4.5%
Sum		80.4%

PRODUCT 03 – Sour cream, Cup

Tab 16. Most relevant impact categories - PRODUCT 03 – Sour cream, Cup				
Label	Total (µPt)	%		
Resource use, fossils	1.48	32.1%		
Climate change	1.30	28.0%		
Resource use, minerals and metals	0.39	8.5%		
Particulate matter	0.32	6.8%		
Ecotoxicity, freshwater	0.20	4.2%		
Sum		79.6%		

Funded by the European Union

PRODUCT 04 – Greek yoghurt, Cup

Tab 17. Most relevant impact categories - PRODUCT 04 – Greek

	yo	gnun, cup
Label	Total (µPt)	%
Resource use, fossils	2.43	32.3%
Climate change	2.11	28.0%
Resource use, minerals and metals	0.64	8.4%
Particulate matter	0.50	6.7%
Ecotoxicity, freshwater	0.31	4.2%
Sum		79.6%

PRODUCT 05 – Pork chop, Wrapped Tray

Tab 18. Most relevant impact categor	ies - PRODUCT chop, Wrap	05 – Pork oped Tray
Label	Total (µPt)	%
Climate change	1.92	32.5%
Resource use, fossils	1.89	31.8%
Photochemical ozone formation	0.33	5.6%
Particulate matter	0.33	5.6%
Water use	0.31	5.2%
Sum		80.8%

PRODUCT 06 - Florette Mache, OPP Film

Tab 19. Most relevant impact categories - PRODUCT 06 -

	Florette Mache,	OPP FIIM
Label	Total (µPt)	%
Resource use, fossils	0.69	36.2%
Climate change	0.56	29.6%
Particulate matter	0.10	5.4%
Resource use, minerals and metals	0.09	4.8%
Water use	0.08	4.1%
Sum		80.03%

PRODUCT 07 – Butter, Aluminium, & OPP Film

Tab 20. Most relevant impact categories - PRODUCT 07 -

Butter, Al	iuminium, & (JPP FIIM
Label	Total (µPt)	%
Resource use, fossils	0.32	27.6%
Climate change	0.30	25.5%
Particulate matter	0.15	12.8%
Resource use, minerals and metals	0.09	7.9%
Acidification	0.06	4.9%
Eutrophication, freshwater	0.05	4.2%
Sum		82.9%

Funded by the European Union

PRODUCT 08 – Grated cheese, OPA & LDPE Film

Tab 21. Most relevant impact categori	es - PRODUCT 01 Aluminium, &	7 – Butter, OPP Film
Label	Total (µPt)	%
Climate change	0.86	34.1%
Resource use, fossils	0.63	24.9%
Resource use, minerals and metals	0.23	8.9%
Particulate matter	0.17	6.8%
Acidification	0.12	4.6%
Sum		79.3%

PRODUCT 09 – Peanut curl, OPP Film

Tab 22. Most relevant i	impact	categories	- PRODUC	T 09	– Pea	inut
				curl	OPP P	=ilm

cun, OFF I		
Label	Total (µPt)	%
Resource use, fossils	0.64	35.5%
Climate change	0.55	30.6%
Particulate matter	0.10	5.4%
Resource use, minerals and metals	0.09	4.7%
Water use	0.07	4.0%
Sum		80.3%

PRODUCT 10 – Savory biscuits, OPP & Cardboard

Tab 23. Most relevant impact categories - PRODUCT 10 – Savory biscuits. OPP & Cardboard

Label	Total (µPt)	%
Climate change	1.34	26.6%
Resource use, fossils	1.01	20.0%
Particulate matter	0.81	16.0%
Eutrophication, freshwater	0.33	6.5%
Acidification	0.26	5.1%
Land use	0.26	5.1%
Sum		79.3%

R3PACK

7.2. Relevant impact categories overview and comments

IMPACT CATEGORIES OVERVIEW

The graphic below (Fig.25) groups the impacts of all the products into the consistent impact categories, presented as percentage contribution (Tab. 14-23).

From this graphic it is possible to highlight that, for all 10 products analysed, the two most relevant impact categories are climate change and fossil resources use. These results mainly derive from the extensive use of fossil-based polymeric materials in the manufacturing of the analysed packaging. In the end-of-life phase, the incineration and landfill processes, whose impact is included in the calculation, strongly impact climate change. The relative differences among the products, within the same impact categories, are mainly due to the type of constituent polymeric materials and the impact of their production process.

Impact categories relevant contributions_overall products

Figure 25: Impact categories relevant contributions on overall products

8. <u>ANNEXES</u> 8.1. Annex I: Data collection

PRODUCT 01 – Florette Shaker, PET Cup

Name of the product	Floréale Prepared fi	ruits – P	ET cup
Packaging capacity	400 ml		
PRODUCT COMPOS	ITION - INBOUND OI	RAW N	NATERIALS
	Commercial name of the product (Material Data Sheet)	Weight	Process technology
		(g)	
PACKAGING BODY			
Shaker PET	Polyethylene terephtalate	11,6	Thermoforming
PET foil lid	Polyethylene terephtalate	0,8	Extrusion
Packaging production technology	Thermoformed shaker	12,4	

Brief description:
Preformed PET shaker,
heat sealed with a thin
PET foil lid

PRODUCT 02 – Salad MDD, PET Tray

		-	
Name of the			
product	LSDH Prepared sala	d – PET	tray
Packaging			
capacity	250 g		
PRODUCT COMPOS	ITION - INBOUND O	RAW	MATERIALS
	Commercial name of the product (Material Data Sheet)	Weight	Process technology
		(g)	
PACKAGING BODY			
(Bowl) Tray 192 mm x 192 x 53	PET	20	thermoforming
Lid	PET	10	thermoforming
		30	
Packaging	Manual filling (in		
production	line by operators),		
technology	chilled		

PRODUCT 03 – Sour cream, Cup

Name of the product	Yoghurt – PP cup		
Packaging capacity	201g		
PRODUCT COMPOS	TION - INBOUND OF	RAW MATER	IALS
	Commercial name of the product (Material Data Sheet)	Weight	Process technology
		(g)	
PACKAGING BODY			
Cup	BB	0 E	thormoforming
Cup	PP	8,5	thermoforming
Cup Lid	PP Aluminium	8,5 0,81	thermoforming
Cup Lid Overcap	PP Aluminium PET	8,5 0,81 3,05	thermoforming thermoforming

PRODUCT 04 – Greek yoghurt, Cup

Name of the					
product	Yoghurt – Cup with lid and over				
Packaging					
capacity	450g	450g			
PRODUCT COMPOS	SITION - INBOUND OF	RAW MATER	IALS		
	Commercial name of the product (Material Data Sheet)	Weight	Process technology		
		(g)			
PACKAGING BODY					
Cup	PP	14	thermoforming		
Lid	Aluminum	1,25			
Overcap	PET	5	thermoforming		
Packaging production technology	Preformed cup	20.25			

PRODUCT 05 – Pork chop, Wrapped Tray

Name of the				
product	In shop – PSE Tray			
Packaging				
capacity	500 q			Image
PRODUCT COMPC	DSITION - INBOUND O		RIALS	1
	Commercial name of the product (Material Data Sheet)	Weight	Process technology	
		(g)		
PACKAGING BODY				
Tray (5.2)	EPS	10,9	Sheet extrusion and thermoforming + (foaming)	
Wrapping film (5.1)	PVC	2,9	Bubble extrusion	
Packaging production				
technology		13.8		

PRODUCT 06 - Florette Mache, OPP Film

Name of the product	Floréale Bagged salad – OPP film			
Packaging				
capacity	125g			
PRODUCT COMPOSITION - INBOUND OF RAW MATERIALS				
	Commercial name of the product (Material Data Sheet)	Weight	Process technology	
		(g)		
PACKAGING BODY				
OPP film 15 μm – 13,7g/m²	ОРР	2,19	Extrusion	
Adhesive 2g/m²	Polyurethane adhesive	0,32		
Ink 1g/m²	Printing ink	0,16	Printing	
OPP film 20µm 18,2g/m²	ОРР	2,91	Extrusion	
Packaging				
production	Vertical Flowpack			
technology		5,58		

Brief description: Bioriented Polypropylene bag, made of two plastic layers with the printing in between

PRODUCT 07 – Butter, Aluminium, & OPP Film

Name of the				
product	Butter – Aluminium & OPP film			
Packaging				
capacity	250g			
PRODUCT COMPO	SITION - INBOUND OI	RAW	NATERIALS	
	Commercial name of the product (Material Data Sheet)	Weight	Process technology	
		(g)		
PACKAGING BODY				
Aluminium	Aluminium	0,67		
Polypropylène	Polypropylène	1,28		
		1,95		
Packaging production technology	Gluing between Alu/OPP			

PRODUCT 08 – Grated cheese, OPA & LDPE Film

Name of the					
product	Entremont (Sodiaal) Cheese - OPA & LDPE film				
Deckesing	Entremont (Sourday)				
Packaging 					
capacity	180g				
PRODUCT COMPOS	PRODUCT COMPOSITION - INBOUND OF RAW MATERIALS				
	Commercial name of the product (Material Data Sheet)	Weight	Process technology		
		(g)			
PACKAGING BODY	•	•			
Oriented Polyamid (17 g/m2)	Oriented Polyamid	1,3	Extrusion		
Ink	Ink	0,11	Gravure Printing		
Adhesive	Adhesive	0,15	Complexing		
Polyethylene (50 g/m2)	Polyethylene	3,5	Extrusion		
		5,06			
Packaging					
production					
technology	Complexing				

PRODUCT 09 – Peanut curl, OPP Film

Name of the					
product	Altho Chips – pouch	Altho Chips – pouch bag - OPP film			
Packaging					
capacity	125g				
PRODUCT COMPOSITION - INBOUND OF RAW MATERIALS					
	Commercial name of the product (Material Data Sheet)	Weight	Process technology		
		(g)			
PACKAGING BODY					
OPPmat20	Oriented Polypropilene	2,16	Extrusion		
Metallization		0,0032	Metallization		
Adhesive		0,296	Curing		
Printing – Inks		0,414	Flexography / Helioprinting		
OPPmet25	Oriented Polypropilene	2,7	Extrusion		
Varnish (Optional)					
Packaging production technology	Lamination	5,5732			

Brief description: flat film size: 395 mm x 300mm (grammage 47 g/m2)

PRODUCT 10 – Savory biscuits, OPP & Cardboard

Name of the					
product	Savory biscuits – OPP baas + cardboard				
Packaging	Most common 85a (Most common 85g (Min			
capacity	85a/Max105a)				
capacity	039/11/0X1039/				
PRODUCT COMPOS	ITION - INBOUND OF	RAW MA	TERIALS		
	Commercial name of the product (Material Data Sheet)	Weight		Process technology	
		(g)			
PACKAGING BODY	1	1	1		
Bag (Width 355mm / Length 180mm)	Coex Gloss OPP 15µm	0,798525	Extrusion		
Bag (Width 355mm /	Coex Metallized OPP				
Length 180mm)	15µm	0,792675			
Bag (Width 355mm /	Matallization	0.0117			
Rag (Width 255mm /	Wetamzation	0,0117			
Length 180mm)	Adhesive	0.14625			
		1,74915			
Cardboard box	Hermicoat GD2 95% recycled 340asm	23 51	Elat cut		
Cardboard box	Ink	0.11			
Cardboard box	Acrvlic varnish	0.34			
Cardboard box	Glue	0,04			
		24,00			
Packaging		,			
production	Lamination (bag)				
technology		25,75			

Brief description: 15 OPP/15 OPPmet bags One supplier only : India No printing on the bag Printing on the box : Offset printing 5-6 colors + acrylic varnish

References

COMMISSION RECOMMENDATION (EU) 2021/2279 of 15 December 2021 on the use of the Environmental Footprint methods to measure and communicate the life cycle environmental performance of products and organisations. Available in: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32021H2279

Wolf, M. A., The Circular Footprint Formula (CFF) and its practical application training. Environmental Footprint (EF) transition phase, 2019. Webinar available in: https://ec.europa.eu/environment/eussd/videos/2019-10-08%2016.01%20The%20Circular%20Footprint%20Formula.mp4

Zampori, L. and Pant, R., Suggestions for updating the Product Environmental Footprint (PEF) method, EUR 29682 EN, Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-76-00654-1, doi:10.2760/424613, JRC11595. Available in : https://publications.jrc.ec.europa.eu/repository/handle/JRC115959

